a2 United States Patent

LaCivita et al.

US009280401B2

US 9,280,401 B2
Mar. 8, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

TYPE AGNOSTIC DATA ENGINE

Applicant: THEPLATFORM, LLC, Seattle, WA
us)

Inventors: Jeremy John LaCivita, Seattle, WA

(US); Daniel Niland, Seattle, WA (US)

Assignee: thePlatform, LL.C, Seattle, WA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 99 days.

Appl. No.: 14/151,451

(58) Field of Classification Search
CPC GOGF 9/4862; GOG6F 9/541; GOG6F 9/546
USPC ooiivevieviecneercicenenen 719/313,317, 328
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,898,261 B1* 11/2014 Patsenker etal. 709/220
2008/0082907 Al* 4/2008 Sorotokin et al. .. 715/210
2015/0089408 Al* 3/2015 He ...ccoovvnrne. .. 715/765
2015/0134735 Al* 5/2015 Momchilovetal. 709/203

* cited by examiner

Primary Examiner — Andy Ho
(74) Attorney, Agent, or Firm — Ballard Spahr LLP

Filed: Jan. 9, 2014
57 ABSTRACT
Prior Publication Data . .
Systems and methods for processing and/or presenting data
US 2015/0193279 Al Jul. 9, 2015 are disclosed. In an aspect, one method can comprise receiv-
ing a request for information and detecting a type of data
Int. CL representing the information requested. The data can be pro-
GOGF 13/00 (2006.01) cessed via a type-dependent agent and the processed data can
GOGF 9/54 (2006.01) be provided via an agnostic data engine.
U.S. CL
CPC . GO6F 9/541 (2013.01) 20 Claims, 7 Drawing Sheets
Component Component
09 300
. Data Engine :
: 124 :
. Data Agent Data Agent :
: 122 122 :
. interface :
. 108 .

d-o...lo....o.o.ou...o.o.o....o..-.o.o.o....o.-.o..'

162

US 9,280,401 B2

Sheet 1 of 7

Mar. 8, 2016

U.S. Patent

L 'Ol

1Y)
18ijuep]

BI1
up-Bing 4

ek auiBus seQ

£

i .
wsly 18

f@ﬁw ligjed

e

“ figeden
puonenbyunn

[ird)
sseoRIRQ]

P61
aaner Bunnduwion

>

NIOMIBN

Y
IsLep)

)

ii
u-Bnig

Vi
2L

M fupeden
JuchEnByUcH

941
IOSAMOIE JOA

[
JUSLLIDIT S0BLISIU

80t SLBLSILY

201

FANABL] SO0

U.S. Patent Mar. 8, 2016 Sheet 2 of 7 US 9,280,401 B2

108-"
2@@\
t<11>] Ix] | \ Hitp-//data. asset |
| Play | | Pause | | Awpicaon | o]
e 206—" N 208

Content

\ 210

202

FIG. 2

U.S. Patent Mar. 8, 2016 Sheet 3 of 7 US 9,280,401 B2

L&
e

Component Component
= \ / @

. Data Engine
. 124
Data Agent Data Agent
: 124 142
interface
. 168
.J ---

" FiG. 3
102

U.S. Patent

402

404

406

408

410

Mar. 8, 2016

Sheet 4 of 7

Receive or Access
Request

'

Detect Data Type and/or
Capabilities

'

Select Data Agent

|

Process Data using the
Select Data Agent

l

Provide the Processed
Data via Data Engine

US 9,280,401 B2

FiG. 4

U.S. Patent

502

504

506

508

510

Mar. 8, 2016 Sheet 5 of 7

Provide Configuration
Information

I

Access Data Agent

:

Access Data Engine

I

Process Data using the
Data Agent

l

Provide the Processed
Data via Data Engine

US 9,280,401 B2

U.S. Patent

602

604

606

808

610

612

Mar. 8, 2016 Sheet 6 of 7

Receive First Data

:

Receive Second Data

:

Process First Data via
First Data Agent

:

Process Second Data via
Second Data Agent

l

Provide Processed Data
via Data Engine

l

Provide Advance
Functionality via Plug-in

US 9,280,401 B2

US 9,280,401 B2

Sheet 7 of 7

Mar. 8, 2016

U.S. Patent

i
aoInag

2yl
20IA80
Bugnduion s1ouey

Bupndwion) sjowsy

SrLi
201AB(]
BunndiuoD slouwsy

i)
el
ol

HIOMIBN

Itz
21ed]
uonzInByuen

P
it

]
BEEMPOR
uonEInbByicD

iy
|

v UissAS

Buneiedny

FAN)
ACUBY WIBISAS

BCL
JEBmY HIOAMBN

L%
S0BLBI|

ndinOyndug

1)

3B Aeidsiy

861
saydepy Aeidsic)

V6L
soineq Buiinduian

sl
E1e]
vonenByuos

504
2IRMYOS
vonznByuoT

i)
Pl

b WwasAg

fuperedo

elhE:Ty!
oBe101g sSBi

0L
0SS0

> 202

BOBLIBI
SUILDBIN UBLLINK

US 9,280,401 B2

1
TYPE AGNOSTIC DATA ENGINE

BACKGROUND

Users can receive data such as content using various soft-
ware programs. Often a software program will have a dedi-
cated application programming interface (API). Accordingly,
editors and creators of content often provide multiple ver-
sions of the same content in order to be consumed using the
various API’s. Such a practice is inefficient and resource
heavy. These and other shortcomings are identified and
addressed by the disclosure.

SUMMARY

It is to be understood that both the following general
description and the following detailed description are exem-
plary and explanatory only and are not restrictive. The meth-
ods and systems of the present disclosure, in one aspect,
provide a data engine as a data type agnostic (e.g., not depen-
dent on data type) interface. In an aspect, the data engine can
be configured as a common API across various data types
and/or platforms.

In an aspect, methods can comprise receiving a request for
information and detecting a type of data representing the
information requested. The data can be processed via a type-
dependent agent and the processed data can be presented via
an agnostic data engine.

In another aspect, methods can comprise detecting a con-
figuration of a device and selecting a type-dependent agent
based upon the detected configuration. Data can be processed
via the selected type-dependent agent and the processed data
can be presented or further processed via an agnostic data
engine.

In yet another aspect, methods can comprise receiving first
data having a first type and receiving second data having a
second type. The first data can be processed via a first type-
dependent agent and the second data can be processed via a
second type-dependent agent. One or more of the processed
first data and the processed second data can be presented or
further processed via an agnostic data engine.

Additional advantages will be set forth in part in the
description which follows or may be learned by practice. The
advantages will be realized and attained by means of the
elements and combinations particularly pointed out in the
appended claims. It is to be understood that bath the foregoing
general description and the following detailed description are
exemplary and explanatory only and are not restrictive, as
claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate embodi-
ments and together with the description, serve to explain the
principles of the methods and systems:

FIG. 1 is a block diagram of an exemplary network;

FIG. 2 is a representation of an exemplary interface;

FIG. 3 is a representation of an exemplary system;

FIG. 4 is a flow chart of an exemplary method;

FIG. 5 is a flow chart of an exemplary method;

FIG. 6 is a flow chart of an exemplary method; and

FIG. 7 is a block diagram of an exemplary computing
system.

DETAILED DESCRIPTION

Before the present methods and systems are disclosed and
described, it is to be understood that the methods and systems

10

15

20

25

30

35

40

45

50

55

60

65

2

are not limited to specific methods, specific components, or to
particular implementations. It is also to be understood that the
terminology used herein is for the purpose of describing
particular embodiments only and is not intended to be limit-
ing.

As used in the specification and the appended claims, the
singular forms “a,” “an,” and “the” include plural referents
unless the context clearly dictates otherwise. Ranges may be
expressed herein as from “about” one particular value, and/or
to “about” another particular value. When such a range is
expressed, another embodiment includes from the one par-
ticular value and/or to the other particular value. Similarly,
when values are expressed as approximations, by use of the
antecedent “about,” it will be understood that the particular
value forms another embodiment. It will be further under-
stood that the endpoints of each of the ranges are significant
both in relation to the other endpoint, and independently of
the other endpoint.

“Optional” or “optionally” means that the subsequently
described event or circumstance may or may not occur, and
that the description includes instances where said event or
circumstance occurs and instances where it does not.

Throughout the description and claims of this specifica-
tion, the word “comprise” and variations of the word, such as
“comprising” and “comprises,” means “including but not lim-
ited to,” and is not intended to exclude, for example, other
components, integers or steps. “Exemplary” means “an
example of” and is not intended to convey an indication of a
preferred or ideal embodiment. “Such as” is not used in a
restrictive sense, but for explanatory purposes.

Disclosed are components that can be used to perform the
disclosed methods and systems. These and other components
are disclosed herein, and it is understood that when combi-
nations, subsets, interactions, groups, etc. of these compo-
nents are disclosed that while specific reference of each vari-
ous individual and collective combinations and permutation
of these may not be explicitly disclosed, each is specifically
contemplated and described herein, for all methods and sys-
tems. This applies to all aspects of this application including,
but not limited to, steps in disclosed methods. Thus, if there
are a variety of additional steps that can be performed it is
understood that each of these additional steps can be per-
formed with any specific embodiment or combination of
embodiments of the disclosed methods.

The present methods and systems may be understood more
readily by reference to the following detailed description of
preferred embodiments and the examples included therein
and to the Figures and their previous and following descrip-
tion.

As will be appreciated by one skilled in the art, the methods
and systems may take the form of an entirely hardware
embodiment, an entirely software embodiment, or an
embodiment combining software and hardware aspects. Fur-
thermore, the methods and systems may take the form of a
computer program product on a computer-readable storage
medium having computer-readable program instructions
(e.g., computer software) embodied in the storage medium.
More particularly, the present methods and systems may take
the form of web-implemented computer software. Any suit-
able computer-readable storage medium may be utilized
including hard disks, CD-ROMs, optical storage devices, or
magnetic storage devices.

Embodiments of the methods and systems are described
below with reference to block diagrams and flowchart illus-
trations of methods, systems, apparatuses and computer pro-
gram products. It will be understood that each block of the
block diagrams and flowchart illustrations, and combinations

US 9,280,401 B2

3

of blocks in the block diagrams and flowchart illustrations,
respectively, can be implemented by computer program
instructions. These computer program instructions may be
loaded onto a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions which
execute on the computer or other programmable data process-
ing apparatus create a means for implementing the functions
specified in the flowchart block or blocks.

These computer program instructions may also be stored in
a computer-readable memory that can direct a computer or
other programmable data processing apparatus to function in
a particular manner, such that the instructions stored in the
computer-readable memory produce an article of manufac-
ture including computer-readable instructions for implement-
ing the function specified in the flowchart block or blocks.
The computer program instructions may also be loaded onto
a computer or other programmable data processing apparatus
to cause a series of operational steps to be performed on the
computer or other programmable apparatus to produce a
computer-implemented process such that the instructions that
execute on the computer or other programmable apparatus
provide steps for implementing the functions specified in the
flowchart block or blocks.

Accordingly, blocks of the block diagrams and flowchart
illustrations support combinations of means for performing
the specified functions, combinations of steps for performing
the specified functions and program instruction means for
performing the specified functions. It will also be understood
that each block of the block diagrams and flowchart illustra-
tions, and combinations of blocks in the block diagrams and
flowchart illustrations, can be implemented by special pur-
pose hardware-based computer systems that perform the
specified functions or steps, or combinations of special pur-
pose hardware and computer instructions.

The methods and systems of the present disclosure, in one
aspect, provides a data engine such as a video playback
mechanism having a single API that can operate works across
various platform and/or format implementations. The data
engine can minimize the number of duplicative data assets an
editor or creator has to create, since a single version can be
processed by the data engine across multiple platforms. In
another aspect, the data engine can be configured as a type
agnostic (e.g., not dependent on data type) interface. In an
aspect, the data engine can be configured as a common API
across various data types and/or platforms, while maintaining
user-facing functionality. In another aspect, the data engine
can be implemented as a low level API for data consumption
(e.g., content playback) to provide one or more interactive
functions (e.g., start, pause, seek, etc.) with received data.

FIG. 1 illustrates various aspects of an exemplary network
in which the present methods and systems can operate. The
present disclosure relates to an agnostic data engine. Those
skilled in the art will appreciate that present methods may be
used in systems that employ both digital and analog equip-
ment. One skilled in the art will appreciate that provided
herein is a functional description and that the respective func-
tions can be performed by software, hardware, or a combina-
tion of software and hardware.

A system 100 and network can comprise a user device 102
in communication with a computing device 104, such as a
server, for example. The computing device 104 can be dis-
posed locally or remotely relative to the user device 102. As
an example, the user device 102 and the computing device
104 can be in communication via a private or public network,

10

15

20

25

35

40

45

55

60

65

4

such as the Internet. Other forms of communications can be
used, such as wired and wireless telecommunication chan-
nels.

Inanaspect, the user device 102 can be an electronic device
such as a computer, a smartphone, a laptop, a tablet, a set top
box, or other device capable of communicating with the com-
puting device 104. As an example, the user device 102 can
comprise a web browser 106 for providing an interface to a
user to interact with the user device 102 and/or the computing
device 104. The web browser 106 can be any interface for
presenting information to the user and receiving a user feed-
back, such as Internet Explorer, Mozilla Firefox, Google
Chrome, Safari, or the like. Other software, hardware, and/or
interfaces can be used to provide communication between the
user and one or more of the user device 102 and the computing
device 104. As an example, the web browser 106 can request
of query various files from a local source and/or a remote
source.

In an aspect, the user device 102 can comprise an interface
108, such as a user interface or API. As an example, the
interface 108 can be configured to provide a visual presenta-
tion, audio presentation, interactive communication, and the
like. As a further example, interface 108 can comprise one or
more interface elements 110. In an aspect, the interface ele-
ments 110 can comprise a menu, icon, user-selectable button,
drop-down, slider bar, input field, and the like. As an example,
one or more of the interface elements 110 can be configured
to receive a selection or input from a user.

In an aspect, the user device 102 can store information
relating to configurations and/or capabilities 112 of the user
device 102. As an example, the information relating to con-
figurations and/or capabilities 112 can comprise one or more
parameters 114, such as device type, requirements, compat-
ibility, versions, or a combination thereof. Configurations
and/or capabilities 112 can relate to playback of content via
one or more formats, such as HTMLS, Flash, Silverlight, or
other content players (e.g., Android). Configurations and/or
capabilities 112 can be based upon user preferences or user
configured settings. However, if the user attempts to play a
data type (e.g., media type) that does not playback on the
user’s platform or device for the preferred playback method,
the system can revert to a suitable playback method, regard-
less of'the user preference. Configurations and/or capabilities
112 can relate to the mechanism (e.g., hardware, software,
code, etc.) that facilitates user interactions such as interactive
functions (e.g., start, pause, seek, etc.) associated with con-
tent playback.

In an aspect, one or more software components such as
plug-ins 116 can be provided to the user device 102. As an
example, plug-ins 116 can comprise an extension or software
component that adds specific abilities to another software
application. As an example, one or more plug-ins 116 can be
configured to customize the functionality of a particular
application such as the interface 108. In another aspect, one or
more plug-ins 116 can be associated with an identifier 118. As
an example, one or more of the identifiers 118 can be any
identifier, token, character, string, or the like, for differenti-
ating one plug-in 116 from another plug-in 116. As a further
example, the identifiers 118 can comprise information relat-
ing to a software program or platform for which the associ-
ated plug-in is intended to enhance. Other information can be
represented by the identifier 118.

In an aspect, the computing device 104 can be a network
device, such as a gateway, router, concentrator, or server for
communicating with the user device 102. As an example, the
computing device 104 can communicate with the user device

US 9,280,401 B2

5

102 for providing services such as network (e.g., IP) services
using one or more protocols (e.g., FTP, HTTP, etc.).

In an aspect, the computing device 104 can manage the
communication between the user device 102 and a database
120 for sending and receiving data therebetween. As an
example, the database 120 can store a plurality of data sets
(e.g., routing tables, server identifiers, addresses, etc.), user
identifiers or records, authentication information, or other
information. As a further example, the user device 102 can
request and/or retrieve a file from the database 120. In an
aspect, the database 114 can store information relating to the
user device 102, such as the configuration information 112
and/or configuration parameters 114. Any information can be
stored in and retrieved from the database 120. The database
120 can be disposed remotely from the computing device 104
and accessed via direct or indirect connection. The database
120 can be integrated with the computing system 104 or some
other device or system.

In an aspect, one or more data agents 122 can be stored,
accessed, and/or generated by the computing system 104. The
data agents 122 can be configured as type-dependent agents
for processing data based on a data type or platform type. As
an example, data type can comprise format, programming
language, compatible video interface, compatible platform,
or a combination thereof. As a further example, one or more
data agents 122 can comprise or be similar to HTMLS, Flash,
Silverlight, or other data processing agents. In a further
aspect, one or more data agents 122 can be implemented by
the computing device 104 and/or transmitted to the user
device 102 for implementation by the user device 102.

In an aspect, one or more data agents 122 can be selected
and/or modified based on one or more of the following fac-
tors: capabilities of the playback device, capabilities of a
browser, and/or data type. Different devices and/or browsers
can have very different playback capabilities, and such con-
figurations can be managed to ensure that the user’s playback
experience is as seamless as possible. Depending on capabili-
ties (e.g., configurations and capabilities 112) different data
agents 122 can be selected to effect playback. As an example,
a device may be configured to handle content interaction
using HTMLS5 functions. Accordingly, a data agent 122 con-
figured to interface with HTMLS5 can be selected to ensure the
user can interact with content.

In an aspect, one or more data engines 124 can be stored,
accessed, and/or generated by the computing system 104. In
another aspect, one or more data engines 124 can be config-
ured to implement platform-specific behavior in an agnostic
manner. As such, a user can interact with received data, while
the data engine 124 masks or hides the data agent 122 that is
used to process the received data. As an example, the data
engine 124 can be configured to present data via a consistent
API regardless of which data agent 122 is in use. As a further
example, data agents 122 can be seamlessly switched, while
the data engine 124 remains the same.

In an aspect, the data engine 124 can be configured to
implement one or more data processing functions similar to
that of the video tag (e.g., HTMLS) capabilities. In another
aspect, the data engine 124 can be configured so as to provide
a consistent API and event system across various data (e.g.,
media) types. A consistent API can provide a seamless pre-
sentation to a user such that the user experience is substan-
tially similar regardless of the underlying data agent 122
being used to process the data.

In an aspect, the data engine 124 can be configured to
receive a data asset, such as content. As an example, a data
asset can be loaded into the data engine 124. The data engine
124 or other component can determine a type of the data. The

5

10

15

20

25

30

35

40

45

50

55

60

65

6

data type (e.g., HTMLS5, flash, Silverlight) can denote a con-
figuration of one or more of the data agent 122 and data
engine 124 to use. The data engine 124 can be configured to
provide one or more functions (e.g., start, pause, seek). As a
further example, unloading the data asset can comprise a
two-step process. Playback of the content asset can be
stopped, but the configurations of the data engine 124 and
selected data agent 122 can be maintained. However, the
content asset can also be unloaded and the configurations
(e.g., instances) of the data engine 124 and selected data agent
122 can be removed (e.g., removed from storage, removed
from active processing, deleted).

In an aspect, the data engine 124 can comprise a data
interface configured as a reserve of playback elements (e.g.,
data agents 122) and a data player configured to manage
communication with the playback elements. The data inter-
faces can be or comprise a permanent object configured to
control the communication with one or more document object
model (DOM) objects, such as, HTMLS5 video tags, the SWF
player, or the Silverlight player. The data player of the data
engine 124 can be configured to control the data interfaces
and can “smooth out” the differences between each of the data
interfaces in such way that to the data engine 124 each player
behaves the same. In another aspect, one or more plug-ins can
be provided to expand the functions provided by the data
engine 124.

In an aspect, the data engine 124 can comprise an identifier.
As an example, the identifier can comprise a string having a
resource locator to a configuration file (e.g., config.xml). As a
further example, the identifier can comprise an object includ-
ing a set of configurations. Configurations of the data engine
124 can comprise content scaling such as stretch, resize,
expand to fit screen, and “fit,” for example. Content scaling
can denote how the data engine 124 manages black spaceina
received data asset. Content scaling can be used to manage the
differences between data agents 122. Configurations of the
data engine 124 can comprise the presentation of native con-
trols associated with one or more data agents 122 or a con-
ventional player of one or more of the underlying data types.
Configurations of the data engine 124 can comprise dynamic
information relating to the supported functions of an under-
lying data agent 122 such as mute, volume control, full screen
mode, etc. Configurations of the data engine 124 can com-
prise playback functions such as pause/unpause, playback
position time or frame), total playback time, playback state
(end, complete, error), loaded data/unloaded data, buffer
state, show/hide, seek, frame forward, play, full screen mode,
mute, volume control, bit rate, etc.

In an aspect, software can be used to implement methods
for processing data in an agnostic manner. The methods and
systems can comprise a software interface such as interface
108, as illustrated in FIG. 2. By way of example, the interface
108 can be loaded to the user device 102 as an add-on soft-
ware package. As a further example, the interface 108 can be
associated with one or more data agents 122 (FIG. 1) and/or
data engines 124 (FIG. 1).

The methods and systems disclosed can utilize one or more
interfaces 108 to perform one or more functions in one or
more locations. FIG. 2 illustrates an exemplary interface 108
for performing the disclosed methods. This exemplary inter-
face 108 is only an example of an interface and is not intended
to suggest any limitation as to the scope of use or functionality
of interface architecture. Neither should the interface 108 be
interpreted as having any dependency or requirement relating
to any one or combination of components illustrated in the
interface 108.

US 9,280,401 B2

7

In an aspect, the interface 108 can comprise a viewing
window 202 for displaying information (e.g. web pages, files,
etc.) to the user. As an example, the interface 108 can com-
prise an address bar 204 or URL bar to allow a user to input a
URL for directing the requests of the interface 108. In an
aspect, the interface 108 can comprise a toolbar disposed
adjacent the address bar 204 of the interface 108 and includ-
ing one or more interface elements, buttons, or engageable
menus. The interface 108 can be presented to the user in any
position, form, and environment. As an example, the interface
108 can comprise a plurality of interface elements, such as
user-engageable buttons 206 for executing various associated
functions (e.g. search function, settings modification, play,
pause, seek, and the like.)

In an aspect, the interface 108 can comprise an interface
element, such as home button, preset function, or pointer for
directing the interface 108 to a pre-defined file or webpage,
and/or a plug-in, extension, or an application 208 requiring a
plug-in or extension. In another aspect, the interface 108 can
be configured to present data to a user, such as via the viewing
window 202. As an example, the interface 108 can present
content 210 to a user. As a further example, the interface
elements can be used to interact with the content 210.

In an aspect, the interface 108 can be controlled based on
one or more data agents 122 and/or data engines 124, as
illustrated in FI1G. 3. As such, the data engine 124 can provide
a common interface with which developers, editors, and the
like can interact. As an example, components 300, such as
software components, add-ons, plug-ins, and the like, can be
developed to interface with the data engine 124. Accordingly,
the components 300 can provide functionality beyond the
native functionality of the data engine 124 without requiring
a direct compatibility with a particular data agent 122.

In an aspect, the data engine 124 can provide a consistent
mechanism for developers to manage playback of data, such
as content, in a variety of contexts. Accordingly, the data
engine 124 allows developers to write code to a common
interface. Developers can focus on creating (e.g., coding) the
business logic and user interface environment associated with
content playback, without regard to customized code for each
individual device or platform. The data engine 124 also
allows for consistent testing. Either the data engine 124 canbe
tested stand-alone for a particular data type or a set of code
can use the data engine 124 to create a test mock-up that
stands in for actual video playback for testing (e.g., imple-
menting business logic). However, in an aspect, one or more
data engines 124 can be customized for a particular device or
environment, if desired. As an example, the configurations of
the user device 102 can be determined (e.g., by a boot loader)
and the data engine 124 can be constructed to provide a
common interface between developer components (e.g. com-
ponents 300) and the particularly configured user device 102.

FIG. 4 illustrates an exemplary method for processing data.
In step 402, a request for information can be received or
accessed. In an aspect, the request for information can com-
prise a request for functionality, such as functions relating to
the processing of data (e.g., content). As an example, the
request can comprise an identifier relating to a particular
content asset.

In step 404, a type of data representing the information
requested can be detected. In an aspect, the type of data can
comprise format, programming language, compatible video
interface, compatible platform, or a combination thereof. In
another aspect, the type of data can relate to configurations
such as capabilities of a device requesting the information in
step 402.

15

20

40

45

55

60

8

In step 406, a data agent of a plurality of data agents can be
selected. In an aspect, the data agent can be selected based
upon the type of data detected. As an example, the data agent
can be type-dependent and a particular data agent is selected
to facilitate processing of a particular type of data. In another
aspect, the type-dependent agent can facilitate content play-
back.

In step 408, the data can be processed via the select type-
dependent agent. In an aspect, the selected data agent can be
provided to a device for processing the requested informa-
tion.

In step 410, the processed data can be provided via a data
engine. In an aspect, the processed data is presented via an
agnostic data engine. As an example, the agnostic data engine
allows a user can interact with received data, while the agnos-
tic data engine masks or hides the data agent that is used to
process the received data. As an example, the data engine can
be configured to present data via a consistent API regardless
ofwhich data agent is in use. As a further example, data agents
can be seamlessly switched, while the data engine remains the
same. As yet a further example, the agnostic data engine is
associated with a document object model. In another aspect,
providing the processed data comprises rendering one or
more of images, video, and audio.

FIG. 5 illustrates an exemplary method for processing data.
In step 502, configuration information can be provided. In an
aspect, the configuration information can relate to capabili-
ties of a device such as a user device. Configuration informa-
tion can comprise a platform used by the device for data
processing such as content playback. Configuration informa-
tion can comprise user preferences relating to data processing
such as content playback. As an example, the information can
relate to one or more parameters, such as device type, require-
ments, compatibility, versions, or a combination thereof.

In step 504, a data agent can be accessed (e.g., received,
selected, initiated, received access to, etc.). In an aspect, the
data agent can be selected and transmitted to a device based
upon the configuration information provided in step 502. As
an example, the data agent can be type-dependent and a
particular data agent is received to facilitate processing of a
particular type of data.

In step 506, a data engine can be accessed (e.g., received,
selected, initiated, received access to, etc.). In an aspect, the
data engine can be selected and transmitted to a device based
upon the configuration information provided in step 502. As
an example, the data engine can be type-agnostic to facilitate
acommon interface. In step 508, the data can be processed via
the received data agent. In another aspect, the data agent can
facilitate content playback.

In step 510, the processed data can be provided via the
received data engine. In an aspect, the processed data is pre-
sented via an agnostic data engine. As an example, the agnos-
tic data engine allows a user to interact with received data,
while the agnostic data engine masks or hides the data agent
that is used to process the received data. As an example, the
data engine can be configured to present data via a consistent
API regardless of which data agent is in use. As a further
example, data agents can be seamlessly switched, while the
data engine remains the same. As yet a further example, the
agnostic data engine is associated with a document object
model. In another aspect, providing the processed data com-
prises rendering one or more of images, video, and audio.

FIG. 6 illustrates an exemplary method for processing data.
In step 602, first data can be received or accessed. Inan aspect,
the first data can comprise one or more content assets. As an
example, the first data can have a data type, such as a format,
programming language, compatible video interface, compat-

US 9,280,401 B2

9

ible platform, or a combination thereof. In another aspect, the
type of data can relate to configurations, such as capabilities
of a device requesting the information in step 602.

In step 604, second data can be received or accessed. In an
aspect, the first data can comprise one or more content assets.
As an example, the second data can have a data type, such as
a format, programming language, compatible video interface,
compatible platform, or a combination thereof. In another
aspect, the type of data can relate to configurations such as
capabilities of a device requesting the information in step
602. The first data can have the same or different type.

In step 606, the first data can be processed via a data agent.
As an example, the data agent can be type-dependent and a
particular data agent is selected to facilitate processing of a
particular type of the first data. In another aspect, the first data
agent can facilitate content playback.

In step 608, the second data can be processed via a data
agent. As an example, the data agent can be type-dependent
and a particular data agent is selected to facilitate processing
of a particular type of the second data. In another aspect, the
second data agent can facilitate content playback.

In step 610, the processed first data and/or second data can
be provided via a data engine. In an aspect, the processed data
is presented via an agnostic data engine. As an example, the
agnostic data engine allows a user to interact with received
data, while the agnostic data engine masks or hides the data
agent that is used to process the received data. As an example,
the data engine can be configured to present data via a con-
sistent API regardless of which data agent is in use. As a
further example, data agents can be seamlessly switched,
while the data engine remains the same. As yet a further
example, the agnostic data engine is associated with a docu-
ment object model. In another aspect, providing the pro-
cessed data comprises rendering one or more of images,
video, and audio.

In step 612, functionality can be provided based on a com-
ponent such as a plug-in. In an aspect, advance functionality
that is not native to the data engine can be provided to a user
through the component. Such a component can interface with
the data engine.

In an exemplary aspect, the methods and systems can be
implemented on a computing system such as computing
device 701 as illustrated in FIG. 7 and described below. By
way of example, one or more of the user device 102 and the
computing device 104 of FIG. 1 can be a computer as illus-
trated in FIG. 7. Similarly, the methods and systems disclosed
can utilize one or more computers to perform one or more
functions in one or more locations. FIG. 7 is a block diagram
illustrating an exemplary operating environment for perform-
ing the disclosed methods. This exemplary operating envi-
ronment is only an example of an operating environment and
is not intended to suggest any limitation as to the scope of use
or functionality of operating environment architecture. Nei-
ther should the operating environment be interpreted as hav-
ing any dependency or requirement relating to any one or
combination of components illustrated in the exemplary oper-
ating environment.

The present methods and systems can be operational with
numerous other general purpose or special purpose comput-
ing system environments or configurations. Examples of well
known computing systems, environments, and/or configura-
tions that can be suitable for use with the systems and meth-
ods comprise, but are not limited to, personal computers,
server computers, laptop devices, and multiprocessor sys-
tems. Additional examples comprise set top boxes, program-
mable consumer electronics, network PCs, minicomputers,

10

15

20

25

30

35

40

45

50

55

60

65

10

mainframe computers, distributed computing environments
that comprise any of the above systems or devices, and the
like.

The processing of the disclosed methods and systems can
be performed by software components. The disclosed sys-
tems and methods can be described in the general context of
computer-executable instructions, such as program modules,
being executed by one or more computers or other devices.
Generally, program modules comprise computer code, rou-
tines, programs, objects, components, data structures, etc.
that perform particular tasks or implement particular abstract
data types. The disclosed methods can also be practiced in
grid-based and distributed computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
computing environment, program modules can be located in
both local and remote computer storage media including
memory storage devices.

Further, one skilled in the art will appreciate that the sys-
tems and methods disclosed herein can be implemented via a
general-purpose computing device in the form of'a computing
device 701. The components of the computing device 701 can
comprise, but are not limited to, one or more processors or
processing units 703, a system memory 712, and a system bus
713 that couples various system components including the
processor 703 to the system memory 712. In the case of
multiple processing units 703, the system can utilize parallel
computing.

The system bus 713 represents one or more of several
possible types of bus structures, including a memory bus or
memory controller, a peripheral bus, an accelerated graphics
port, and a processor or local bus using any of a variety of bus
architectures. By way of example, such architectures can
comprise an Industry Standard Architecture (ISA) bus, a
Micro Channel Architecture (MCA) bus, an Enhanced ISA
(EISA) bus, a Video Electronics Standards Association
(VESA) local bus, an Accelerated Graphics Port (AGP) bus,
and a Peripheral Component Interconnects (PCI), a PCI-Ex-
press bus, a Personal Computer Memory Card Industry Asso-
ciation (PCMCIA), Universal Serial Bus (USB) and the like.
The bus 713, and all buses specified in this description can
also be implemented over a wired or wireless network con-
nection and each of the subsystems, including the processor
703, a mass storage device 704, an operating system 705,
configuration software 706, configuration data 707, a net-
work adapter 708, system memory 712, an Input/Output
Interface 710, a display adapter 709, adisplay device 711, and
a human machine interface 702, can be contained within one
or more remote computing devices 714a,b,¢ at physically
separate locations, connected through buses of this form, in
effect implementing a fully distributed system.

The computing device 701 typically comprises a variety of
computer readable media. Exemplary readable media can be
any available media that is accessible by the computing
device 701 and comprises, for example and not meant to be
limiting, both volatile and non-volatile media, removable and
non-removable media. The system memory 712 comprises
computer readable media in the form of volatile memory,
such as random access memory (RAM), and/or non-volatile
memory, such as read only memory (ROM). The system
memory 712 typically contains data such as configuration
data 707 and/or program modules such as operating system
705 and configuration software 706 that are immediately
accessible to and/or are presently operated on by the process-
ing unit 703.

In another aspect, the computing device 701 can also com-
prise other removable/non-removable, volatile/non-volatile

US 9,280,401 B2

11

computer storage media. By way of example, FIG. 7 illus-
trates a mass storage device 704 which can provide non-
volatile storage of computer code, computer readable instruc-
tions, data structures, program modules, and other data for the
computing device 701. For example and not meant to be
limiting, a mass storage device 704 can be a hard disk, a
removable magnetic disk, a removable optical disk, magnetic
cassettes or other magnetic storage devices, flash memory
cards, CD-ROM, digital versatile disks (DVD) or other opti-
cal storage, random access memories (RAM), read only
memories (ROM), electrically erasable programmable read-
only memory (EEPROM), and the like.

Optionally, any number of program modules can be stored
on the mass storage device 704, including by way of example,
an operating system 705 and configuration software 706.
Each of the operating system 705 and configuration software
706 (or some combination thereof) can comprise elements of
the programming and the configuration software 706. Con-
figuration data 707 can also be stored on the mass storage
device 704. Configuration data 707 can be stored in any of one
or more databases known in the art. Examples of such data-
bases comprise, DB2®, Microsoft® Access, Microsoft®
SQL Server, Oracle®, mySQL, PostgreSQL, and the like.
The databases can be centralized or distributed across mul-
tiple systems.

In another aspect, the user can enter commands and infor-
mation into the computing device 701 via an input device (not
shown). Examples of such input devices comprise, but are not
limited to, a keyboard, pointing device (e.g., a “mouse”), a
microphone, a joystick, a scanner, tactile input devices such
as gloves, and other body coverings, and the like. These and
other input devices can be connected to the processing unit
703 via a human machine interface 702 that is coupled to the
system bus 713, but can be connected by other interface and
bus structures, such as a parallel port, game port, an IEEE
1394 Port (also known as a Firewire port), a serial port, or a
universal serial bus (USB).

In yet another aspect, a display device 711 can also be
connected to the system bus 713 via an interface, such as a
display adapter 709. It is contemplated that the computing
device 701 can have more than one display adapter 709 and
the computer 701 can have more than one display device 711.
For example, a display device can be a monitor, an LCD
(Liquid Crystal Display), or a projector. In addition to the
display device 711, other output peripheral devices can com-
prise components such as speakers (not shown) and a printer
not shown) which can be connected to the computing device
701 via Input/Output Interface 710. Any step and/or result of
the methods can be output in any form to an output device.
Such output can be any form of visual representation, includ-
ing, but not limited to, textual, graphical, animation, audio,
tactile, and the like. The display 711 and computing device
701 can be part of one device, or separate devices.

The computing device 701 can operate in a networked
environment using logical connections to one or more remote
computing devices 714a,b,¢c. By way of example, a remote
computing device can be a personal computer, portable com-
puter, a smart phone, a server, a router, a network computer, a
peer device or other common network node, and so on. Logi-
cal connections between the computing device 701 and a
remote computing device 7144, b, ¢ can be made via a network
715, such as a local area network (LAN) and a general wide
area network (WAN). Such network connections can be
through a network adapter 708. A network adapter 708 can be
implemented in both wired and wireless environments. Such
networking environments are conventional and common-

20

30

40

45

55

12

place in dwellings, offices, enterprise-wide computer net-
works, intranets, and the Internet.

For purposes of illustration, application programs and
other executable program components such as the operating
system 705 are illustrated herein as discrete blocks, although
it is recognized that such programs and components reside at
various times in different storage components of the comput-
ing device 701, and are executed by the data processor(s) of
the computer. An implementation of configuration software
706 can be stored on or transmitted across some form of
computer readable media. Any of the disclosed methods can
be performed by computer readable instructions embodied on
computer readable media. Computer readable media can be
any available media that can be accessed by a computer. By
way of example and not meant to be limiting, computer read-
able media can comprise “computer storage media” and
“communications media.” “Computer storage media” com-
prise volatile and non-volatile, removable and non-removable
media implemented in any methods or technology for storage
of information such as computer readable instructions, data
structures, program modules, or other data. Exemplary com-
puter storage media comprises, but is not limited to, RAM,
ROM, EEPROM, flash memory or other memory technology,
CD-ROM, digital versatile disks (DVD) or other optical stor-
age, magnetic cassettes, magnetic tape, magnetic disk storage
or other magnetic storage devices, or any other medium
which can be used to store the desired information and which
can be accessed by a computer.

The methods and systems can employ artificial intelligence
(Al techniques such as machine learning and iterative learn-
ing. Examples of such techniques include, but are not limited
to, expert systems, case based reasoning, Bayesian networks,
behavior based Al, neural networks, fuzzy systems, evolu-
tionary computation (e.g. genetic algorithms), swarm intelli-
gence (e.g. ant algorithms), and hybrid intelligent systems
(e.g. Expert inference rules generated through a neural net-
work or production rules from statistical learning).

While the methods and systems have been described in
connection with preferred embodiments and specific
examples, it is not intended that the scope be limited to the
particular embodiments set forth, as the embodiments herein
areintended in all respects to be illustrative rather than restric-
tive.

Unless otherwise expressly stated, it is in no way intended
that any method set forth herein be construed as requiring that
its steps be performed in a specific order. Accordingly, where
a method claim does not actually recite an order to be fol-
lowed by its steps or it is not otherwise specifically stated in
the claims or descriptions that the steps are to be limited to a
specific order, it is no way intended that an order be inferred,
in any respect. This holds for any possible non-express basis
for interpretation, including: matters of logic with respect to
arrangement of steps or operational flow; plain meaning
derived from grammatical organization or punctuation; the
number or type of embodiments described in the specifica-
tion.

It will be apparent to those skilled in the art that various
modifications and variations can be made without departing
from the scope or spirit. Other embodiments will be apparent
to those skilled in the art from consideration of the specifica-
tion and practice disclosed herein. It is intended that the
specification and examples be considered as exemplary only,
with a true scope and spirit being indicated by the following
claims.

US 9,280,401 B2

13

What is claimed is:

1. A method implemented by one or more computing
devices, comprising:

receiving a request for information;

detecting a type of data representing the information

requested;

processing the data via a type-dependent agent; and

providing the processed data via an agnostic data engine.

2. The method of claim 1, wherein the request for informa-
tion comprises an identifier relating to content.

3. The method of claim 1, wherein the type of data com-
prises a format, a programming language, a compatible video
interface, a compatible platform, or a combination thereof.

4. The method of claim 1, wherein the type-dependent
agent facilitates video playback.

5. The method of claim 1, wherein providing the processed
data comprises rendering one or more of images, video, and
audio.

6. The method of claim 1, wherein the agnostic data engine
is associated with a document object model.

7. A method implemented by one or more computing
devices, comprising:

detecting a configuration of a device;

selecting a type-dependent agent based upon the detected

configuration;

processing first data via the selected type-dependent agent;

and

providing the processed first data via an agnostic data

engine.

8. The method of claim 7, wherein the configuration rep-
resents a capability of the device.

9. The method of claim 7, wherein the configuration com-
prises a format, a programming language, a compatible video
interface, a compatible platform, or a combination thereof.

10. The method of claim 7, wherein the type-dependent
agent facilitates video playback.

11. The method of claim 7, wherein providing the pro-
cessed first data comprises rendering one or more of images,
video, and audio.

5

10

15

20

25

30

35

14

12. The method of claim 7, wherein the agnostic data
engine is associated with a document object model.

13. The method of claim 7, further comprising:

receiving second data;

detecting a type of the second data;

selecting a second type-dependent agent;

processing the second data via the selected second type-

dependent agent; and

providing the processed second data via the agnostic data

engine.

14. The method of claim 13, wherein the agnostic data
engine seamlessly switches between providing the processed
first data and providing the processed second data.

15. A method implemented by one or more computing
devices, comprising:

receiving first data comprising a first type;

receiving second data comprising a second type;

processing the first data via a first type-dependent agent;

processing the second data via a second type-dependent
agent; and

providing one or more of the processed first data and the

processed second data via an agnostic data engine.

16. The method of claim 15, wherein one or more of the
first type and the second type comprises a format, a program-
ming language, a compatible video interface, a compatible
platform, or a combination thereof.

17. The method of claim 15, wherein one or more of the
first type-dependent agent and the second type-dependent
agent facilitates video playback.

18. The method of claim 15, wherein providing one or
more of the processed first data and the processed second data
comprises rendering one or more of images, video, and audio.

19. The method of claim 15, wherein the agnostic data
engine is associated with a document object model.

20. The method of claim 15, wherein the agnostic data
engine is configured to seamlessly switch between providing
the processed first data and providing the processed second
data.

